An improved multiply robust estimator for the average treatment effect.
Journal:
BMC medical research methodology
PMID:
37821829
Abstract
BACKGROUND: In observational studies, double robust or multiply robust (MR) approaches provide more protection from model misspecification than the inverse probability weighting and g-computation for estimating the average treatment effect (ATE). However, the approaches are based on parametric models, leading to biased estimates when all models are incorrectly specified. Nonparametric methods, such as machine learning or nonparametric double robust approaches, are robust to model misspecification, but the efficiency of nonparametric methods is low.