Improved segmentation of basal ganglia from MR images using convolutional neural network with crossover-typed skip connection.
Journal:
International journal of computer assisted radiology and surgery
Published Date:
Nov 20, 2023
Abstract
PURPOSE: Accurate and automatic segmentation of basal ganglia from magnetic resonance (MR) images is important for diagnosis and treatment of various brain disorders. However, the basal ganglia segmentation is a challenging task because of the class imbalance and the unclear boundaries among basal ganglia anatomical structures. Thus, we aim to present an encoder-decoder convolutional neural network (CNN)-based method for improved segmentation of basal ganglia by focusing on skip connections that determine the segmentation performance of encoder-decoder CNNs. We also aim to reveal the effect of skip connections on the segmentation of basal ganglia with unclear boundaries.