Deep Learning in Surgical Workflow Analysis: A Review of Phase and Step Recognition.
Journal:
IEEE journal of biomedical and health informatics
PMID:
37665700
Abstract
OBJECTIVE: In the last two decades, there has been a growing interest in exploring surgical procedures with statistical models to analyze operations at different semantic levels. This information is necessary for developing context-aware intelligent systems, which can assist the physicians during operations, evaluate procedures afterward or help the management team to effectively utilize the operating room. The objective is to extract reliable patterns from surgical data for the robust estimation of surgical activities performed during operations. The purpose of this article is to review the state-of-the-art deep learning methods that have been published after 2018 for analyzing surgical workflows, with a focus on phase and step recognition.