Using Bayesian Neural Networks to Select Features and Compute Credible Intervals for Personalized Survival Prediction.

Journal: IEEE transactions on bio-medical engineering
Published Date:

Abstract

An Individual Survival Distribution (ISD) models a patient's personalized survival probability at all future time points. Previously, ISD models have been shown to produce accurate and personalized survival estimates (for example, time to relapse or to death) in several clinical applications. However, off-the-shelf neural-network-based ISD models are usually opaque models due to their limited support for meaningful feature selection and uncertainty estimation, which hinders their wide clinical adoption. Here, we introduce a Bayesian-neural-network-based ISD (BNN-ISD) model that produces accurate survival estimates but also quantifies the uncertainty in model's parameter estimation, which can be used to (1) rank the importance of the input features to support feature selection and (2) compute credible intervals around ISDs for clinicians to assess the model's confidence in its prediction. Our BNN-ISD model utilized sparsity-inducing priors to learn a sparse set of weights to enable feature selection. We provide empirical evidence, on 2 synthetic and 3 real-world clinical datasets, that BNN-ISD system can effectively select meaningful features and compute trustworthy credible intervals of the survival distribution for each patient. We observed that our approach accurately recovers feature importance in the synthetic datasets and selects meaningful features for the real-world clinical data as well, while also achieving state-of-the-art survival prediction performance. We also show that these credible regions can aid in clinical decision-making by providing a gauge of the uncertainty of the estimated ISD curves.

Authors

  • Shi-Ang Qi
  • Neeraj Kumar
  • Ruchika Verma
  • Jian-Yi Xu
  • Grace Shen-Tu
  • Russell Greiner
    Unity Health Toronto (Verma, Murray, Straus, Pou-Prom, Mamdani); Li Ka Shing Knowledge Institute of St. Michael's Hospital (Verma, Straus, Pou-Prom, Mamdani); Department of Medicine (Verma, Shojania, Straus, Mamdani) and Institute of Health Policy, Management, and Evaluation (Verma, Mamdani) and Department of Statistics (Murray), University of Toronto, Toronto, Ont.; University of Alberta (Greiner); Alberta Machine Intelligence Institute (Greiner), Edmonton, Alta.; Montreal Institute for Learning Algorithms (Cohen), Montréal, Que.; Centre for Quality Improvement and Patient Safety (Shojania), University of Toronto; Sunnybrook Health Sciences Centre (Shojania); Vector Institute (Ghassemi, Mamdani) and Department of Computer Science (Ghassemi); Leslie Dan Faculty of Pharmacy (Mamdani), University of Toronto, Toronto, Ont.; Department of Radiology, Stanford University (Cohen), Stanford, Calif.