Quantitative gait analysis and prediction using artificial intelligence for patients with gait disorders.

Journal: Scientific reports
PMID:

Abstract

Quantitative Gait Analysis (QGA) is considered as an objective measure of gait performance. In this study, we aim at designing an artificial intelligence that can efficiently predict the progression of gait quality using kinematic data obtained from QGA. For this purpose, a gait database collected from 734 patients with gait disorders is used. As the patient walks, kinematic data is collected during the gait session. This data is processed to generate the Gait Profile Score (GPS) for each gait cycle. Tracking potential GPS variations enables detecting changes in gait quality. In this regard, our work is driven by predicting such future variations. Two approaches were considered: signal-based and image-based. The signal-based one uses raw gait cycles, while the image-based one employs a two-dimensional Fast Fourier Transform (2D FFT) representation of gait cycles. Several architectures were developed, and the obtained Area Under the Curve (AUC) was above 0.72 for both approaches. To the best of our knowledge, our study is the first to apply neural networks for gait prediction tasks.

Authors

  • Nawel Ben Chaabane
    LaTIM UMR 1101 Laboratory, Inserm, Brest, France. nawel.ben-chaabane@inserm.fr.
  • Pierre-Henri Conze
    Inserm, UMR 1101, Brest F-29200, France; Institut Mines-Télécom Atlantique, Brest F-29200, France.
  • Mathieu Lempereur
    Laboratoire de Traitement de l'Information Médicale, INSERM U1101, Brest, France; Université de Bretagne Occidentale, Brest, France; CHRU de Brest, Hôpital Morvan, service de médecine physique et de réadaptation, Brest, France. Electronic address: mathieu.lempereur@univ-brest.fr.
  • Gwenolé Quellec
    Inserm, UMR 1101, 22 avenue Camille-Desmoulins, Brest F-29200, France. Electronic address: gwenole.quellec@inserm.fr.
  • Olivier Rémy-Néris
    Laboratoire de Traitement de l'Information Médicale, INSERM U1101, Brest, France; Université de Bretagne Occidentale, Brest, France; CHRU de Brest, Hôpital Morvan, service de médecine physique et de réadaptation, Brest, France.
  • Sylvain Brochard
    Laboratoire de Traitement de l'Information Médicale, INSERM U1101, Brest, France; Université de Bretagne Occidentale, Brest, France; CHRU de Brest, Hôpital Morvan, service de médecine physique et de réadaptation, Brest, France.
  • Béatrice Cochener
    Université de Bretagne Occidentale, 3 rue des Archives, Brest F-29200, France; Inserm, UMR 1101, 22 avenue Camille-Desmoulins, Brest F-29200, France; Service d'Ophtalmologie, CHRU Brest, 2 avenue Foch, Brest F-29200, France.
  • Mathieu Lamard
    Université de Bretagne Occidentale, 3 rue des Archives, Brest F-29200, France; Inserm, UMR 1101, 22 avenue Camille-Desmoulins, Brest F-29200, France.