AI approach to biventricular function assessment in cine-MRI: an ultra-small training dataset and multivendor study.

Journal: Physics in medicine and biology
Published Date:

Abstract

. It was a great challenge to train an excellent and generalized model on an ultra-small data set composed of multi-orientation cardiac cine magnetic resonance imaging (MRI) images. We try to develop a 3D deep learning method based on an ultra-small training data set from muti-orientation cine MRI images and assess its performance of automated biventricular structure segmentation and function assessment in multivendor.. We completed the training and testing of our deep learning networks using only heart datasets of 150 cases (90 cases for training and 60 cases for testing). This datasets were obtained from three different MRI vendors and each subject included two phases of the cardiac cycle and three cine sequences. A 3D deep learning algorithm combining Transformers and U-Net was trained. The performance of the segmentation was evaluated using the Dice metric and Hausdorff distance (HD). Based on this, the manual and automatic results of cardiac function parameters were compared with Pearson correlation, intraclass correlation coefficient (ICC) and Bland-Altman analysis in multivendor.. The results show that the average Dice of 0.92, 0.92, 0.94 and HD95 of 2.50, 1.36, 1.37 for three sequences. The automatic and manual results of seven parameters were excellently correlated with the lowest2 value of 0.824 and the highest of 0.983. The ICC (0.908-0.989,< 0.001) showed that the results were highly consistent. Bland-Altman with a 95% limit of agreement showed there was no significant difference except for the difference in RVESV (= 0.005) and LVM (< 0.001).. The model had high accuracy in segmentation and excellent correlation and consistency in function assessment. It provides a fast and effective method for studying cardiac MRI and heart disease.

Authors

  • Jing Wang
    Endoscopy Center, Peking University Cancer Hospital and Institute, Beijing, China.
  • Nan Zhang
    Department of Pulmonary and Critical Care Medicine II, Emergency General Hospital, Beijing, China.
  • Shuyu Wang
    Department of Control Engineering, Northeastern University, Qinhuangdao, Hebei, 066001, PR China. Electronic address: wangshuyu@neuq.edu.cn.
  • Wei Liang
    Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
  • Haiyue Zhao
    Shandong Youth University of Political Science, No.31699 Jing Shi East Road, Li Xia District, Jinan, Shandong, People's Republic of China.
  • Weili Xia
    Department of Science and Education, Shandong Mental Health Center, People's Republic of China.
  • Jianlei Zhu
    Department of Neuromodulation Center, Shandong Mental Health Center, People's Republic of China.
  • Yan Zhang
    Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, China.
  • Wei Zhang
    The First Affiliated Hospital of Nanchang University, Nanchang, China.
  • Senchun Chai
    Department of Automation, School of automation, Beijing Institute of Technology, People's Republic of China.