Forecasting deep learning-based risk assessment of vector-borne diseases using hybrid methodology.
Journal:
Technology and health care : official journal of the European Society for Engineering and Medicine
PMID:
38968030
Abstract
BACKGROUND: Dengue fever is rapidly becoming Malaysia's most pressing health concern, as the reported cases have nearly doubled over the past decade. Without efficacious antiviral medications, vector control remains the primary strategy for battling dengue, while the recently introduced tetravalent immunization is being evaluated. The most significant and dangerous risk increasing recently is vector-borne illnesses. These illnesses induce significant human sickness and are transmitted by blood-feeding arthropods such as fleas, parasites, and mosquitos. A thorough grasp of various factors is necessary to improve prediction accuracy and typically generate inaccurate and unstable predictions, as well as machine learning (ML) models, weather-driven mechanisms, and numerical time series.