Machine learning-based classification of petrofacies in fine laminated limestones.

Journal: Anais da Academia Brasileira de Ciencias
PMID:

Abstract

Characterization and development of hydrocarbon reservoirs depends on the classification of lithological patterns from well log data. In thin reservoir units, limited vertical data impedes the efficient classification of lithologies. We present a test case of petrofacies classification using machine learning models in a thin interval of finely laminated limestones using pseudo-well data created over outcrops (radiometric and unconfined compressive strength logs). We tested Gaussian naïve Bayes (GNB) and support vector machine (SVM) techniques to classify eight petrofacies types, divided into two groups. The objective was to observe the capacity of some well-known models to classify petrofacies with a high-frequency vertical variation of diagenetic heterogeneities in an extreme scenario within a thin sedimentary interval. The GNB was less effective (F 1 score of 0.29), and the SVM achieved the best results in classifying the main facies patterns (F 1 = 0.47). However, the GNB performed better when the analysis was focused on distinguishing the two main groups of petrofacies. The results demonstrate that high-frequency facies variations present a challenge to the automatic identification of lithofacies, mainly due to local variations in horizontal heterogeneities (on the mm- to cm-scale) created by depositional and diagenetic processes, which impact the flow in porous media.

Authors

  • Gallileu Genesis
    Universidade Federal de Pernambuco, Departamento de Engenharia Civil, Laboratório de Métodos Computacionais em Geomecânica, Av. da Arquitetura, s/n, Cidade Universitária, 50740-540 Recife, PE, Brazil.
  • Igor F Gomes
    Universidade Federal de Pernambuco, Departamento de Engenharia Civil, Laboratório de Métodos Computacionais em Geomecânica, Av. da Arquitetura, s/n, Cidade Universitária, 50740-540 Recife, PE, Brazil.
  • José Antonio Barbosa
    Universidade Federal de Pernambuco, Departamento de Geologia, GEOQUANTT, Av. da Arquitetura, Cidade Universitária, 57040-530 Recife, PE, Brazil.
  • Araly Fabiana L DE Araújo
    Universidade Federal de Pernambuco, Departamento de Geologia, GEOQUANTT, Av. da Arquitetura, Cidade Universitária, 57040-530 Recife, PE, Brazil.
  • Germano Mário S Ramos
    Universidade Federal de Pernambuco, Departamento de Geologia, GEOQUANTT, Av. da Arquitetura, Cidade Universitária, 57040-530 Recife, PE, Brazil.