DeepNphos: A deep-learning architecture for prediction of N-phosphorylation sites.
Journal:
Computers in biology and medicine
PMID:
38295472
Abstract
MOTIVATION: Phosphorylation, a prevalent post-translational modification, plays a crucial role in regulating cellular activities. This process encompasses O-phosphorylation (e.g., phosphoserine) and N-phosphorylation (e.g., phospho-lysine (pK), phospho-arginine (pR), and phospho-histidine (pH)). While significant research has focused on O-phosphorylation, resulting in the development of various algorithms for predicting O-phosphorylation sites with commendable performance, there has been a notable absence of models designed to predict N-phosphorylation sites. This study introduces an integrated model named DeepNphos, designed to predict N-phosphorylation sites. This model is developed based on the analysis of thousands of experimentally identified pK, pR and pH sites.