Next generation phenotyping for diagnosis and phenotype-genotype correlations in Kabuki syndrome.

Journal: Scientific reports
PMID:

Abstract

The field of dysmorphology has been changed by the use Artificial Intelligence (AI) and the development of Next Generation Phenotyping (NGP). The aim of this study was to propose a new NGP model for predicting KS (Kabuki Syndrome) on 2D facial photographs and distinguish KS1 (KS type 1, KMT2D-related) from KS2 (KS type 2, KDM6A-related). We included retrospectively and prospectively, from 1998 to 2023, all frontal and lateral pictures of patients with a molecular confirmation of KS. After automatic preprocessing, we extracted geometric and textural features. After incorporation of age, gender, and ethnicity, we used XGboost (eXtreme Gradient Boosting), a supervised machine learning classifier. The model was tested on an independent validation set. Finally, we compared the performances of our model with DeepGestalt (Face2Gene). The study included 1448 frontal and lateral facial photographs from 6 centers, corresponding to 634 patients (527 controls, 107 KS); 82 (78%) of KS patients had a variation in the KMT2D gene (KS1) and 23 (22%) in the KDM6A gene (KS2). We were able to distinguish KS from controls in the independent validation group with an accuracy of 95.8% (78.9-99.9%, p < 0.001) and distinguish KS1 from KS2 with an empirical Area Under the Curve (AUC) of 0.805 (0.729-0.880, p < 0.001). We report an automatic detection model for KS with high performances (AUC 0.993 and accuracy 95.8%). We were able to distinguish patients with KS1 from KS2, with an AUC of 0.805. These results outperform the current commercial AI-based solutions and expert clinicians.

Authors

  • Quentin Hennocq
    Imagine Institute, INSERM UMR1163, 75015, Paris, France. quentin.hennocq@aphp.fr.
  • Marjolaine Willems
    Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.
  • Jeanne Amiel
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Stéphanie Arpin
    Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
  • Tania Attie-Bitach
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Thomas Bongibault
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Thomas Bouygues
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Valerie Cormier-Daire
    Reference Centre for Constitutional Bone Diseases, laboratory of Osteochondrodysplasia, INSERM UMR 1163, Imagine Institute, Université de Paris, Paris, France.
  • Pierre Corre
    Nantes Université, CHU Nantes, Service de chirurgie maxillo-faciale et stomatologie, 44000, Nantes, France.
  • Klaus Dieterich
    Univ. Grenoble Alpes, Inserm, U1209, IAB, CHU Grenoble Alpes, 38000, Grenoble, France.
  • Maxime Douillet
    Institut Imagine, Paris Descartes University-Sorbonne Paris Cité, Paris, France.
  • Jean Feydy
    Université Paris Cité, HeKA team, Inria Paris, Inserm, 75006, Paris, France.
  • Eva Galliani
    Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
  • Fabienne Giuliano
    MEDISYN Genetics, Lausanne, Switzerland.
  • Stanislas Lyonnet
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Arnaud Picard
    Service de chirurgie maxillo-faciale et chirurgie plastique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
  • Thantrira Porntaveetus
    Faculty of Dentistry, Department of Physiology, Center of Excellence in Genomics and Precision Dentistry, Clinical Research Center, Geriatric Dentistry and Special Patients Care International Program, Chulalongkorn University, Bangkok, Thailand.
  • Marlène Rio
    Imagine Institute, INSERM UMR1163, 75015, Paris, France.
  • Flavien Rouxel
    Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.
  • Vorasuk Shotelersuk
    Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
  • Annick Toutain
    Service de Génétique, CHU Tours, UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
  • Kevin Yauy
    Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.
  • David Geneviève
    Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Centre de référence anomalies du développement SOOR, INSERM U1183, Montpellier University, Montpellier, France.
  • Roman H Khonsari
    Department of Maxillofacial Surgery and Plastic Surgery, Necker - Enfants Malades University Hospital, Paris, France.
  • Nicolas Garcelon
    Plateforme data science - institut des maladies génétiques Imagine, Inserm, centre de recherche des Cordeliers, UMR 1138 équipe 22, institut Imagine, Paris-Descartes, université Sorbonne- Paris Cité, Paris, France.