Uncovering hidden treasures: Mapping morphological changes in the differentiation of human mesenchymal stem cells to osteoblasts using deep learning.

Journal: Micron (Oxford, England : 1993)
PMID:

Abstract

Deep Learning (DL) is becoming an increasingly popular technology being employed in life sciences research due to its ability to perform complex and time-consuming tasks with significantly greater speed, accuracy, and reproducibility than human researchers - allowing them to dedicate their time to more complex tasks. One potential application of DL is to analyze cell images taken by microscopes. Quantitative analysis of cell microscopy images remain a challenge - with manual cell characterization requiring excessive amounts of time and effort. DL can address these issues, by quickly extracting such data and enabling rigorous, empirical analysis of images. Here, DL is used to quantitively analyze images of Mesenchymal Stem Cells (MSCs) differentiating into Osteoblasts (OBs), tracking morphological changes throughout this transition. The changes in morphology throughout the differentiation protocol provide evidence for a distinct path of morphological transformations that the cells undergo in their transition, with changes in perimeter being observable before changes in eceentricity. Subsequent differentiation experiments can be quantitatively compared with our dataset to concretely evaluate how different conditions affect differentiation and this paper can also be used as a guide for researchers on how to utilize DL workflows in their own labs.

Authors

  • Faisal Quadri
    The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
  • Mano Govindaraj
    The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
  • Soja Soman
    The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
  • Niti M Dhutia
    The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE.
  • Sanjairaj Vijayavenkataraman
    The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, UAE; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA. Electronic address: vs89@nyu.edu.