Novel dimensionality reduction method, Taelcore, enhances lung transplantation risk prediction.

Journal: Computers in biology and medicine
PMID:

Abstract

In this work, we present a new approach to predict the risk of acute cellular rejection (ACR) after lung transplantation by using machine learning algorithms, such as Multilayer Perceptron (MLP) or Autoencoder (AE), and combining them with topological data analysis (TDA) tools. Our proposed method, named topological autoencoder with best linear combination for optimal reduction of embeddings (Taelcore), effectively reduces the dimensionality of high-dimensional datasets and yields better results compared to other models. We validate the effectiveness of Taelcore in reducing the prediction error rate on four datasets. Furthermore, we demonstrate that Taelcore's topological improvements have a positive effect on the majority of the machine learning algorithms used. By providing a new way to diagnose patients and detect complications early, this work contributes to improved clinical outcomes in lung transplantation.

Authors

  • Fatma Gouiaa
    Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, Laboratoire d'excellence Inflamex, Villetaneuse, France.
  • Kelly L Vomo-Donfack
    Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, Laboratoire d'excellence Inflamex, Villetaneuse, France.
  • Alexy Tran-Dinh
    Université Paris Cité, AP-HP, Hôpital Bichat Claude Bernard, Département d'anesthésie-Réanimation, INSERM, Paris, France; Universié Paris Cité, LVTS, Inserm U1148, F-75018 Paris, France.
  • Ian Morilla
    Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, Laboratoire d'excellence Inflamex, Villetaneuse, France; University of Malaga, Department of Genetics, MLiMO, 29010, Málaga, Spain. Electronic address: morilla@math.univ-paris13.fr.