AI-Driven Enhancements in Drug Screening and Optimization.

Journal: Methods in molecular biology (Clifton, N.J.)
Published Date:

Abstract

The greatest challenge in drug discovery remains the high rate of attrition across the different phases of the process, which cost the industry billions of dollars every year. While all phases remain crucial to ensure pharmaceutical-level safety, quality, and efficacy of the end product, streamlining these efforts toward compounds with success potential is pivotal for a more efficient and cost-effective process. The use of artificial intelligence (AI) within the pharmaceutical industry aims at just this, and has applications in preclinical screening for biological activity, optimization of pharmacokinetic properties for improved drug formulation, early toxicity prediction which reduces attrition, and pre-emptively screening for genetic changes in the biological target to improve therapeutic longevity. Here, we present a series of in silico tools that address these applications in small molecule development and describe how they can be embedded within the current pharmaceutical development pipeline.

Authors

  • Adam Serghini
    School of Chemistry and Molecular Biosciences, Chemistry Building 68, Cooper Road, The University of Queensland, St Lucia, QLD 4072, Queensland, Australia.
  • Stephanie Portelli
    Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Victoria, 3010, Australia.
  • David B Ascher
    Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Australia.