AIMC Topic: Drug Evaluation, Preclinical

Clear Filters Showing 1 to 10 of 192 articles

Deep learning-based dipeptidyl peptidase IV inhibitor screening, experimental validation, and GaMD/LiGaMD analysis.

BMC biology
BACKGROUND: Dipeptidyl peptidase-4 (DPP4) is considered a crucial enzyme in type 2 diabetes (T2D) treatment, targeted by inhibitors due to its role in cleaving glucagon-like peptide-1 (GLP-1). In this study, a novel DPP4 inhibitor screening strategy ...

Atomic Ga Site Enables Photonanozymes with Specific Inhibition Modes for Primary Drug Screening.

Analytical chemistry
Enzyme inhibition plays a crucial role in drug discovery by governing interactions between molecules and distinct enzymatic sites, facilitating the identification of early drug candidates. However, most nanozymes have been limited to single active si...

In Silico Screening of Small Molecule Inhibitors for Amyloid-β Aggregation.

Journal of chemical information and modeling
The self-aggregation of amyloid-β (Aβ) into fibrils is a hallmark of Alzheimer's disease (AD). Inhibition of Aβ aggregation with small molecule compounds represents a promising therapeutic strategy for AD. However, designing effective ligands is chal...

On the Difficulty to Rescore Hits from Ultralarge Docking Screens.

Journal of chemical information and modeling
Docking-based virtual screening tools customized to mine ultralarge chemical spaces are consistently reported to yield both higher hit rates and more potent ligands than that achieved by conventional docking of smaller million-sized compound librarie...

Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing.

Drug discovery today
Artificial intelligence (AI) is reshaping preclinical drug research offering innovative alternatives to traditional animal testing. Advanced techniques, including machine learning (ML), deep learning (DL), AI-powered digital twins (DTs), and AI-enhan...

Discovery and Characterization of Novel Receptor-Interacting Protein Kinase 1 Inhibitors Using Deep Learning and Virtual Screening.

ACS chemical neuroscience
Receptor-interacting protein kinase 1 (RIPK1) serves as a critical mediator of cell necroptosis and represents a promising therapeutic target for various human neurodegenerative diseases and inflammatory diseases. Nonetheless, the RIPK1 inhibitors cu...

In silico discovery of novel compounds for FAK activation using virtual screening, AI-based prediction, and molecular dynamics.

Computational biology and chemistry
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase that plays a crucial role in cell proliferation, migration, and signal transduction. FAK is overexpressed in metastatic and advanced-stage cancers, where it is considered a key kinase in c...

Unveiling CNS cell morphology with deep learning: A gateway to anti-inflammatory compound screening.

PloS one
Deciphering the complex relationships between cellular morphology and phenotypic manifestations is crucial for understanding cell behavior, particularly in the context of neuropathological states. Despite its importance, the application of advanced i...

Fine-Tuned Deep Transfer Learning Models for Large Screenings of Safer Drugs Targeting Class A GPCRs.

Biochemistry
G protein-coupled receptors (GPCRs) remain a focal point of research due to their critical roles in cell signaling and their prominence as drug targets. However, directly linking drug efficacy to the receptor-mediated activation of specific intracell...