Deep learning-based diffusion tensor image generation model: a proof-of-concept study.

Journal: Scientific reports
Published Date:

Abstract

This study created an image-to-image translation model that synthesizes diffusion tensor images (DTI) from conventional diffusion weighted images, and validated the similarities between the original and synthetic DTI. Thirty-two healthy volunteers were prospectively recruited. DTI and DWI were obtained with six and three directions of the motion probing gradient (MPG), respectively. The identical imaging plane was paired for the image-to-image translation model that synthesized one direction of the MPG from DWI. This process was repeated six times in the respective MPG directions. Regions of interest (ROIs) in the lentiform nucleus, thalamus, posterior limb of the internal capsule, posterior thalamic radiation, and splenium of the corpus callosum were created and applied to maps derived from the original and synthetic DTI. The mean values and signal-to-noise ratio (SNR) of the original and synthetic maps for each ROI were compared. The Bland-Altman plot between the original and synthetic data was evaluated. Although the test dataset showed a larger standard deviation of all values and lower SNR in the synthetic data than in the original data, the Bland-Altman plots showed each plot localizing in a similar distribution. Synthetic DTI could be generated from conventional DWI with an image-to-image translation model.

Authors

  • Hiroyuki Tatekawa
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Daiju Ueda
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan. ai.labo.ocu@gmail.com.
  • Hirotaka Takita
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Toshimasa Matsumoto
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
  • Shannon L Walston
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Yasuhito Mitsuyama
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.
  • Daisuke Horiuchi
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
  • Shu Matsushita
    Department of Diagnostic Radiology, Osaka City General Hospital, 2-13-22 Miyakojima-hondori, Miyakojima-ku, Osaka, 534-0021, Japan.
  • Tatsushi Oura
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan.
  • Yuichiro Tomita
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.
  • Taro Tsukamoto
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3, Asahi-Machi, Abeno-Ku, Osaka, 545-8585, Japan.
  • Taro Shimono
    From the Department of Diagnostic and Interventional Radiology (D.U., A.Y., T.S., S.D., A.S., Y.M.) and Department of Premier Preventive Medicine (S.F.), Osaka City University Graduate School of Medicine, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan; LPixel, Tokyo, Japan (M.N., A.C., Y.S.); and Department of Radiology, Osaka City University Hospital, Osaka, Japan (Y.K.).
  • Yukio Miki
    Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahi-machi, Abeno-ku, Osaka, 545-8585, Japan.