Advantages of transformer and its application for medical image segmentation: a survey.
Journal:
Biomedical engineering online
PMID:
38310297
Abstract
PURPOSE: Convolution operator-based neural networks have shown great success in medical image segmentation over the past decade. The U-shaped network with a codec structure is one of the most widely used models. Transformer, a technology used in natural language processing, can capture long-distance dependencies and has been applied in Vision Transformer to achieve state-of-the-art performance on image classification tasks. Recently, researchers have extended transformer to medical image segmentation tasks, resulting in good models.