In-depth discovery and taste presentation mechanism studies on umami peptides derived from fermented sea bass based on peptidomics and machine learning.

Journal: Food chemistry
PMID:

Abstract

Umami peptides originating from fermented sea bass impart a distinctive flavor to food. Nevertheless, large-scale and rapid screening for umami peptides using conventional techniques is challenging because of problems such as prolonged duration and complicated operation. Therefore, we aimed to screen fermented sea bass using peptidomics and machine learning approaches. The taste presentation mechanism of umami peptides was assessed by molecular docking of T1R1/T1R3. Seventy umami peptides identified in fermented sea bass predominantly originated from 28 precursor proteins, including troponin, myosin, motor protein, and creatine kinase. Six umami peptides with the lowest energies formed stable complexes by binding to T1R3. SER170, SER147, GLN389, and HIS145 are critical binding sites for T1R1/T1R3. Four dominant interacting surface forces were identified: aromatic interactions, hydrogen bonding, hydrophilic bonds, and solvent-accessible surfaces. Our study unveils a method to screen umami peptides efficiently, providing a basis for further exploration of their flavor in fermented sea bass.

Authors

  • Chunxin Wang
    Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
  • Yanyan Wu
    Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China. Electronic address: wuyygd@163.com.
  • Huan Xiang
    School of Artificial Intelligence and Computer, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China.
  • Shengjun Chen
    Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
  • Yongqiang Zhao
    Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
  • Qiuxing Cai
    Guangxi College and University Key Laboratory Development and High-value Utilization of Buibu Gulf Seafood Resources, College of Food Engineering, Beibu Gulf University, Qinzhou, Guangxi 535000, China.
  • Di Wang
    Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People's Republic of China.
  • Yueqi Wang
    Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.