An integrative machine learning model for the identification of tumor T-cell antigens.

Journal: Bio Systems
PMID:

Abstract

The escalating global incidence of cancer poses significant health challenges, underscoring the need for innovative and more efficacious treatments. Cancer immunotherapy, a promising approach leveraging the body's immune system against cancer, emerges as a compelling solution. Consequently, the identification and characterization of tumor T-cell antigens (TTCAs) have become pivotal for exploration. In this manuscript, we introduce TTCA-IF, an integrative machine learning-based framework designed for TTCAs identification. TTCA-IF employs ten feature encoding types in conjunction with five conventional machine learning classifiers. To establish a robust foundation, these classifiers are trained, resulting in the creation of 150 baseline models. The outputs from these baseline models are then fed back into the five classifiers, generating their respective meta-models. Through an ensemble approach, the five meta-models are seamlessly integrated to yield the final predictive model, the TTCA-IF model. Our proposed model, TTCA-IF, surpasses both baseline models and existing predictors in performance. In a comparative analysis involving nine novel peptide sequences, TTCA-IF demonstrated exceptional accuracy by correctly identifying 8 out of 9 peptides as TTCAs. As a tool for screening and pinpointing potential TTCAs, we anticipate TTCA-IF to be invaluable in advancing cancer immunotherapy.

Authors

  • Mir Tanveerul Hassan
    Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
  • Hilal Tayara
    Department of Electronics and Information Engineering, Chonbuk National University, Jeonju 54896, South Korea. Electronic address: hilaltayara@jbnu.ac.kr.
  • Kil To Chong
    Division of Electronic Engineering, and Advanced Research Center of Electronics and Information, Chonbuk National University, Jeonju-Si 54896, South Korea. Electronic address: kitchong@jbnu.ac.kr.