A New Multi-Atlas Based Deep Learning Segmentation Framework With Differentiable Atlas Feature Warping.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Deep learning based multi-atlas segmentation (DL-MA) has achieved the state-of-the-art performance in many medical image segmentation tasks, e.g., brain parcellation. In DL-MA methods, atlas-target correspondence is the key for accurate segmentation. In most existing DL-MA methods, such correspondence is usually established using traditional or deep learning based registration methods at image level with no further feature level adaption. This could cause possible atlas-target feature inconsistency. As a result, the information from atlases often has limited positive and even counteractive impact on the final segmentation results. To tackle this issue, in this paper, we propose a new DL-MA framework, where a novel differentiable atlas feature warping module with a new smooth regularization term is presented to establish feature level atlas-target correspondence. Comparing with the existing DL-MA methods, in our framework, atlas features containing anatomical prior knowledge are more relevant to the target image feature, leading the final segmentation results to a high accuracy level. We evaluate our framework in the context of brain parcellation using two public MR brain image datasets: LPBA40 and NIREP-NA0. The experimental results demonstrate that our framework outperforms both traditional multi-atlas segmentation (MAS) and state-of-the-art DL-MA methods with statistical significance. Further ablation studies confirm the effectiveness of the proposed differentiable atlas feature warping module.

Authors

  • Huabing Liu
    Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
  • Dong Nie
    Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, USA; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, USA.
  • Jian Yang
    Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
  • Jinda Wang
  • Zhenyu Tang