Attentional decoder networks for chest X-ray image recognition on high-resolution features.
Journal:
Computer methods and programs in biomedicine
Published Date:
Apr 27, 2024
Abstract
BACKGROUND AND OBJECTIVE: This paper introduces an encoder-decoder-based attentional decoder network to recognize small-size lesions in chest X-ray images. In the encoder-only network, small-size lesions disappear during the down-sampling steps or are indistinguishable in the low-resolution feature maps. To address these issues, the proposed network processes images in the encoder-decoder architecture similar to U-Net families and classifies lesions by globally pooling high-resolution feature maps. However, two challenging obstacles prohibit U-Net families from being extended to classification: (1) the up-sampling procedure consumes considerable resources, and (2) there needs to be an effective pooling approach for the high-resolution feature maps.