Assessing the reliability of point mutation as data augmentation for deep learning with genomic data.
Journal:
BMC bioinformatics
PMID:
38689247
Abstract
BACKGROUND: Deep neural networks (DNNs) have the potential to revolutionize our understanding and treatment of genetic diseases. An inherent limitation of deep neural networks, however, is their high demand for data during training. To overcome this challenge, other fields, such as computer vision, use various data augmentation techniques to artificially increase the available training data for DNNs. Unfortunately, most data augmentation techniques used in other domains do not transfer well to genomic data.