A serial image analysis architecture with positron emission tomography using machine learning combined for the detection of lung cancer.

Journal: Revista espanola de medicina nuclear e imagen molecular
Published Date:

Abstract

INTRODUCTION AND OBJECTIVES: Lung cancer is the second type of cancer with the second highest incidence rate and the first with the highest mortality rate in the world. Machine learning through the analysis of imaging tests such as positron emission tomography/computed tomography (PET/CT) has become a fundamental tool for the early and accurate detection of cancer. The objective of this study was to propose an image analysis architecture (PET/CT) ordered in phases through the application of ensemble or combined machine learning methods for the early detection of lung cancer by analyzing PET/CT images.

Authors

  • S Guzmán Ortiz
    Servicio de Medicina Nuclear, Hospital Universitario General de Toledo, Toledo, Spain. Electronic address: estefany-go@hotmail.com.
  • R Hurtado Ortiz
    Grupo de investigación en Inteligencia Artificial y Tecnologías de Asistencia (GI-IATA), Universidad Politécnica Salesiana, Cuenca, Azuay, Ecuador.
  • A Jara Gavilanes
    Grupo de investigación en Inteligencia Artificial y Tecnologías de Asistencia (GI-IATA), Universidad Politécnica Salesiana, Cuenca, Azuay, Ecuador.
  • R Ávila Faican
    Grupo de investigación en Inteligencia Artificial y Tecnologías de Asistencia (GI-IATA), Universidad Politécnica Salesiana, Cuenca, Azuay, Ecuador.
  • B Parra Zambrano
    Grupo de investigación en Inteligencia Artificial y Tecnologías de Asistencia (GI-IATA), Universidad Politécnica Salesiana, Cuenca, Azuay, Ecuador.