Automated melanoma detection. An algorithm inspired from human intelligence characterizing disordered pattern of melanocytic lesions improving a convolutional neural network.

Journal: Journal of the American Academy of Dermatology
Published Date:

Abstract

No abstract available for this article.

Authors

  • Jilliana Monnier
    Department of Dermatology and Skin Cancers, CHU la Timone, Aix-Marseille University, Marseille, France.
  • Arthur Cartel Foahom Gouabou
    Aix-Marseille Univ, Université de Marseille, CNRS UMR 7020, Laboratoire d'Informatique et Systèmes, Marseille, France.
  • Meryem Serdi
    Volta Medical, Marseille, France.
  • Jules Collenne
    Computer Science and Systems Laboratory, CNRS UMR 7020, Aix-Marseille University, Marseille, France. Electronic address: jules.collenne@lis-lab.fr.
  • Rabah Iguernaissi
    Computer Science and Systems Laboratory, CNRS UMR 7020, Aix-Marseille University, Marseille, France.
  • Marie-Aleth Richard
    Dermatology and Skin Cancer Department, La Timone Hospital, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France.
  • Caroline Gaudy-Marqueste
    Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France; Dermatology and Skin Cancer Department, La Timone Hospital, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France.
  • Jean-Luc Damoiseaux
    Aix-Marseille Univ, Université de Marseille, CNRS UMR 7020, Laboratoire d'Informatique et Systèmes, Marseille, France.
  • Jean-Jacques Grob
    Cancer Research Center of Marseille, Inserm UMR1068, CNRS UMR7258, Aix-Marseille University, Marseille, France; Dermatology and Skin Cancer Department, La Timone Hospital, Assistance Publique Hôpitaux de Marseille, Aix-Marseille University, Marseille, France.
  • Djamal Merad
    Computer Science and Systems Laboratory, CNRS UMR 7020, Aix-Marseille University, Marseille, France.