Predicting adverse long-term neurocognitive outcomes after pediatric intensive care unit admission.
Journal:
Computer methods and programs in biomedicine
Published Date:
Apr 10, 2024
Abstract
BACKGROUND AND OBJECTIVE: Critically ill children may suffer from impaired neurocognitive functions years after ICU (intensive care unit) discharge. To assess neurocognitive functions, these children are subjected to a fixed sequence of tests. Undergoing all tests is, however, arduous for former pediatric ICU patients, resulting in interrupted evaluations where several neurocognitive deficiencies remain undetected. As a solution, we propose using machine learning to predict the optimal order of tests for each child, reducing the number of tests required to identify the most severe neurocognitive deficiencies.