AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Intensive Care Units, Pediatric

Showing 1 to 10 of 44 articles

Clear Filters

Improved pediatric ICU mortality prediction for respiratory diseases: machine learning and data subdivision insights.

Respiratory research
The growing concern of pediatric mortality demands heightened preparedness in clinical settings, especially within intensive care units (ICUs). As respiratory-related admissions account for a substantial portion of pediatric illnesses, there is a pre...

Establishment and Verification of an Artificial Intelligence Prediction Model for Children With Sepsis.

The Pediatric infectious disease journal
BACKGROUND: Early identification of high-risk groups of children with sepsis is beneficial to reduce sepsis mortality. This article used artificial intelligence (AI) technology to predict the risk of death effectively and quickly in children with sep...

Exploring Heterogeneity in Cost-Effectiveness Using Machine Learning Methods: A Case Study Using the FIRST-ABC Trial.

Medical care
OBJECTIVE: The aim of this study was to explore heterogeneity in the cost-effectiveness of high-flow nasal cannula (HFNC) therapy compared with continuous positive airway pressure (CPAP) in children following extubation.

From bytes to bedside: a systematic review on the use and readiness of artificial intelligence in the neonatal and pediatric intensive care unit.

Intensive care medicine
PURPOSE: Despite its promise to enhance patient outcomes and support clinical decision making, clinical use of artificial intelligence (AI) models at the bedside remains limited. Translation of advancements in AI research into tangible clinical benef...

PROGNOSTIC ACCURACY OF MACHINE LEARNING MODELS FOR IN-HOSPITAL MORTALITY AMONG CHILDREN WITH PHOENIX SEPSIS ADMITTED TO THE PEDIATRIC INTENSIVE CARE UNIT.

Shock (Augusta, Ga.)
Objective: The Phoenix sepsis criteria define sepsis in children with suspected or confirmed infection who have ≥2 in the Phoenix Sepsis Score. The adoption of the Phoenix sepsis criteria eliminated the Systemic Inflammatory Response Syndrome criteri...

Machine Learning-Based Pediatric Early Warning Score: Patient Outcomes in a Pre- Versus Post-Implementation Study, 2019-2023.

Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
OBJECTIVES: To describe the deployment of pediatric Calculated Assessment of Risk and Triage (pCART), a machine learning (ML) model to predict the risk of the direct ward to the ICU transfer within 12 hours, and the associated improved outcomes among...

Interoperable Models for Identifying Critically Ill Children at Risk of Neurologic Morbidity.

JAMA network open
IMPORTANCE: Decreasing mortality in the field of pediatric critical care medicine has shifted practicing clinicians' attention to preserving patients' neurodevelopmental potential as a main objective. Earlier identification of critically ill children...

Development and Validation of an Electronic Health Record-Based, Pediatric Acute Respiratory Distress Syndrome Subphenotype Classifier Model.

Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
OBJECTIVE: To determine if hyperinflammatory and hypoinflammatory pediatric acute respiratory distress syndrome (PARDS) subphenotypes defined using serum biomarkers can be determined solely from electronic health record (EHR) data using machine learn...