Using neural networks to autonomously assess adequacy in intraoperative cholangiograms.
Journal:
Surgical endoscopy
PMID:
38561583
Abstract
BACKGROUND: Intraoperative cholangiography (IOC) is a contrast-enhanced X-ray acquired during laparoscopic cholecystectomy. IOC images the biliary tree whereby filling defects, anatomical anomalies and duct injuries can be identified. In Australia, IOC are performed in over 81% of cholecystectomies compared with 20 to 30% internationally (Welfare AIoHa in Australian Atlas of Healthcare Variation, 2017). In this study, we aim to train artificial intelligence (AI) algorithms to interpret anatomy and recognise abnormalities in IOC images. This has potential utility in (a) intraoperative safety mechanisms to limit the risk of missed ductal injury or stone, (b) surgical training and coaching, and (c) auditing of cholangiogram quality.