Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides.

Journal: Briefings in bioinformatics
Published Date:

Abstract

With their diverse biological activities, peptides are promising candidates for therapeutic applications, showing antimicrobial, antitumour and hormonal signalling capabilities. Despite their advantages, therapeutic peptides face challenges such as short half-life, limited oral bioavailability and susceptibility to plasma degradation. The rise of computational tools and artificial intelligence (AI) in peptide research has spurred the development of advanced methodologies and databases that are pivotal in the exploration of these complex macromolecules. This perspective delves into integrating AI in peptide development, encompassing classifier methods, predictive systems and the avant-garde design facilitated by deep-generative models like generative adversarial networks and variational autoencoders. There are still challenges, such as the need for processing optimization and careful validation of predictive models. This work outlines traditional strategies for machine learning model construction and training techniques and proposes a comprehensive AI-assisted peptide design and validation pipeline. The evolving landscape of peptide design using AI is emphasized, showcasing the practicality of these methods in expediting the development and discovery of novel peptides within the context of peptide-based drug discovery.

Authors

  • Montserrat Goles
    Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
  • Anamaría Daza
    Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile.
  • Gabriel Cabas-Mora
    Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
  • Lindybeth Sarmiento-Varón
    Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile.
  • Julieta Sepúlveda-Yañez
    Facultad de Ciencias de la Salud, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
  • Hoda Anvari-Kazemabad
    Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
  • Mehdi D Davari
    Institute of Biotechnology, RWTH Aachen University, Aachen, Germany. Electronic address: m.davari@biotec.rwth-aachen.de.
  • Roberto Uribe-Paredes
    Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.
  • Álvaro Olivera-Nappa
    Centre for Biotechnology and Bioengineering, CeBiB, Universidad de Chile, Beauchef 851, 8370456, Santiago, Chile.
  • Marcelo A Navarrete
    Centro Asistencial de Docencia e Investigación, CADI, Universidad de Magallanes, Av. Los Flamencos 01364, 6210005, Punta Arenas, Chile.
  • David Medina-Ortiz
    Departamento de Ingeniería en Computación, Universidad de Magallanes, Av. Pdte. Manuel Bulnes 01855, 6210427, Punta Arenas, Chile.