Probability maps for deep learning-based head and neck tumor segmentation: Graphical User Interface design and test.
Journal:
Computers in biology and medicine
Published Date:
May 28, 2024
Abstract
BACKGROUND: The different tumor appearance of head and neck cancer across imaging modalities, scanners, and acquisition parameters accounts for the highly subjective nature of the manual tumor segmentation task. The variability of the manual contours is one of the causes of the lack of generalizability and the suboptimal performance of deep learning (DL) based tumor auto-segmentation models. Therefore, a DL-based method was developed that outputs predicted tumor probabilities for each PET-CT voxel in the form of a probability map instead of one fixed contour. The aim of this study was to show that DL-generated probability maps for tumor segmentation are clinically relevant, intuitive, and a more suitable solution to assist radiation oncologists in gross tumor volume segmentation on PET-CT images of head and neck cancer patients.