Can machine learning predict late seizures after intracerebral hemorrhages? Evidence from real-world data.
Journal:
Epilepsy & behavior : E&B
Published Date:
May 30, 2024
Abstract
INTRODUCTION: Intracerebral hemorrhage represents 15 % of all strokes and it is associated with a high risk of post-stroke epilepsy. However, there are no reliable methods to accurately predict those at higher risk for developing seizures despite their importance in planning treatments, allocating resources, and advancing post-stroke seizure research. Existing risk models have limitations and have not taken advantage of readily available real-world data and artificial intelligence. This study aims to evaluate the performance of Machine-learning-based models to predict post-stroke seizures at 1 year and 5 years after an intracerebral hemorrhage in unselected patients across multiple healthcare organizations.