Blockchain and IoT integration for secure short-term and long-term air quality monitoring system using optimized neural network.

Journal: Environmental science and pollution research international
PMID:

Abstract

Accurate air pollution prediction is vital for residents' well-being. This research introduces a secure air quality monitoring system using neural networks and blockchain for robust analysis, precise predictions, and early pollution detection. Blockchain guarantees data integrity, security, and transparency. Goals include real-time air quality data, secure blockchain recording, and enhanced safety through informed decisions. The research integrates blockchain and IoT for short- and long-term air quality monitoring, utilizing an optimized neural network. IoT sensors collect PM2.5, PM10, CO, NO2, and SO2, processed through noise removal and normalization, with feature extraction using N-tuple contrastive learning. Predictions utilize Graph attention-based deep Residual shrinkage Network and Bidirectional long short Term Memory (GRNBTM) categorized into five levels. An adaptive bowerbird algorithm optimizes parameters, reducing computational complexity. Blockchain integration ensures secure, tamper-proof data storage with a lightweight consensus-based algorithm. The GRNBTM model's air quality monitoring performance is extensively simulated and analyzed at 30-min, 2-h, 1-day, and 1-month intervals, demonstrating superior performance over existing techniques.

Authors

  • Balasubramanian Chinnappan
    Electronics and Instrumentation Engineering, B.S.A Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, Tamil Nadu, India.
  • Kareemullah Hakim
    Electronics and Instrumentation Engineering, B.S.A Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, Tamil Nadu, India. kareemullah@crescent.education.
  • Neelam Sanjeev Kumar
    Department of Computer Science and Engineering, SRM Institute of Science and Technology, Vadapalani, Chennai, Tamil Nadu, 600026, India.
  • Vijayalakshmi Elumalai
    Electronics and Instrumentation Engineering, B.S.A Crescent Institute of Science and Technology, Vandalur, Chennai, 600048, Tamil Nadu, India.