Classification of Caries Based on CBCT: A Deep Learning Network Interpretability Study.

Journal: Journal of imaging informatics in medicine
Published Date:

Abstract

This study aimed to create a caries classification scheme based on cone-beam computed tomography (CBCT) and develop two deep learning models to improve caries classification accuracy. A total of 2713 axial slices were obtained from CBCT images of 204 carious teeth. Both classification models were trained and tested using the same pretrained classification networks on the dataset, including ResNet50_vd, MobileNetV3_large_ssld, and ResNet50_vd_ssld. The first model was used directly to classify the original images (direct classification model). The second model incorporated a presegmentation step for interpretation (interpretable classification model). Performance evaluation metrics including accuracy, precision, recall, and F1 score were calculated. The Local Interpretable Model-agnostic Explanations (LIME) method was employed to elucidate the decision-making process of the two models. In addition, a minimum distance between caries and pulp was introduced for determining the treatment strategies for type II carious teeth. The direct model that utilized the ResNet50_vd_ssld network achieved top accuracy, precision, recall, and F1 score of 0.700, 0.786, 0.606, and 0.616, respectively. Conversely, the interpretable model consistently yielded metrics surpassing 0.917, irrespective of the network employed. The LIME algorithm confirmed the interpretability of the classification models by identifying key image features for caries classification. Evaluation of treatment strategies for type II carious teeth revealed a significant negative correlation (p < 0.01) with the minimum distance. These results demonstrated that the CBCT-based caries classification scheme and the two classification models appeared to be acceptable tools for the diagnosis and categorization of dental caries.

Authors

  • Surong Chen
    Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
  • Yan Yang
    Department of Endocrinology and Metabolism, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
  • Weiwei Wu
    College of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
  • Ruonan Wei
    School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China.
  • Zezhou Wang
    Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
  • Franklin R Tay
    The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA. Electronic address: ftay@augusta.edu.
  • Jingyu Hu
    Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address: 2014tj0116@hust.edu.cn.
  • Jingzhi Ma
    Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address: majingzhi@hust.edu.cn.