AI-Powered Knowledge Base Enables Transparent Prediction of Nanozyme Multiple Catalytic Activity.

Journal: The journal of physical chemistry letters
PMID:

Abstract

Nanozymes are unique materials with many valuable properties for applications in biomedicine, biosensing, environmental monitoring, and beyond. In this work, we developed a machine learning (ML) approach to search for new nanozymes and deployed a web platform, DiZyme, featuring a state-of-the-art database of nanozymes containing 1210 experimental samples, catalytic activity prediction, and DiZyme Assistant interface powered by a large language model (LLM). For the first time, we enable the prediction of multiple catalytic activities of nanozymes by training an ensemble learning algorithm achieving = 0.75 for the Michaelis-Menten constant and = 0.77 for the maximum velocity on unseen test data. We envision an accurate prediction of multiple catalytic activities (peroxidase, oxidase, and catalase) promoting novel applications for a wide range of surface-modified inorganic nanozymes. The DiZyme Assistant based on the ChatGPT model provides users with supporting information on experimental samples, such as synthesis procedures, measurement protocols, etc. DiZyme (dizyme.aicidlab.itmo.ru) is now openly available worldwide.

Authors

  • Julia Razlivina
    International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002, Saint-Petersburg, Russian Federation.
  • Andrei Dmitrenko
    Center for AI in Chemistry, SCAMT institute, ITMO University, Saint-Petersburg 191002, Russian Federation.
  • Vladimir Vinogradov
    International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002, Saint-Petersburg, Russian Federation.