Advanced optimal tracking integrating a neural critic technique for asymmetric constrained zero-sum games.

Journal: Neural networks : the official journal of the International Neural Network Society
PMID:

Abstract

This paper investigates the optimal tracking issue for continuous-time (CT) nonlinear asymmetric constrained zero-sum games (ZSGs) by exploiting the neural critic technique. Initially, an improved algorithm is constructed to tackle the tracking control problem of nonlinear CT multiplayer ZSGs. Also, we give a novel nonquadratic function to settle the asymmetric constraints. One thing worth noting is that the method used in this paper to solve asymmetric constraints eliminates the strict restriction on the control matrix compared to the previous ones. Further, the optimal controls, the worst disturbances, and the tracking Hamilton-Jacobi-Isaacs equation are derived. Next, a single critic neural network is built to estimate the optimal cost function, thus obtaining the approximations of the optimal controls and the worst disturbances. The critic network weight is updated by the normalized steepest descent algorithm. Additionally, based on the Lyapunov method, the stability of the tracking error and the weight estimation error of the critic network is analyzed. In the end, two examples are offered to validate the theoretical results.

Authors

  • Menghua Li
    School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
  • Ding Wang
  • Jin Ren
    Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China; Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China; Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing 100124, China; Beijing Laboratory of Smart Environmental Protection, Beijing University of Technology, Beijing 100124, China. Electronic address: renjin@emails.bjut.edu.cn.
  • Junfei Qiao