Machine learning models on a web application to predict short-term postoperative outcomes following anterior cervical discectomy and fusion.
Journal:
BMC musculoskeletal disorders
PMID:
38773464
Abstract
BACKGROUND: The frequency of anterior cervical discectomy and fusion (ACDF) has increased up to 400% since 2011, underscoring the need to preoperatively anticipate adverse postoperative outcomes given the procedure's expanding use. Our study aims to accomplish two goals: firstly, to develop a suite of explainable machine learning (ML) models capable of predicting adverse postoperative outcomes following ACDF surgery, and secondly, to embed these models in a user-friendly web application, demonstrating their potential utility.