Enhanced multi-class pathology lesion detection in gastric neoplasms using deep learning-based approach and validation.

Journal: Scientific reports
Published Date:

Abstract

This study developed a new convolutional neural network model to detect and classify gastric lesions as malignant, premalignant, and benign. We used 10,181 white-light endoscopy images from 2606 patients in an 8:1:1 ratio. Lesions were categorized as early gastric cancer (EGC), advanced gastric cancer (AGC), gastric dysplasia, benign gastric ulcer (BGU), benign polyp, and benign erosion. We assessed the lesion detection and classification model using six-class, cancer versus non-cancer, and neoplasm versus non-neoplasm categories, as well as T-stage estimation in cancer lesions (T1, T2-T4). The lesion detection rate was 95.22% (219/230 patients) on a per-patient basis: 100% for EGC, 97.22% for AGC, 96.49% for dysplasia, 75.00% for BGU, 97.22% for benign polyps, and 80.49% for benign erosion. The six-class category exhibited an accuracy of 73.43%, sensitivity of 80.90%, specificity of 83.32%, positive predictive value (PPV) of 73.68%, and negative predictive value (NPV) of 88.53%. The sensitivity and NPV were 78.62% and 88.57% for the cancer versus non-cancer category, and 83.26% and 89.80% for the neoplasm versus non-neoplasm category, respectively. The T stage estimation model achieved an accuracy of 85.17%, sensitivity of 88.68%, specificity of 79.81%, PPV of 87.04%, and NPV of 82.18%. The novel CNN-based model remarkably detected and classified malignant, premalignant, and benign gastric lesions and accurately estimated gastric cancer T-stages.

Authors

  • Byeong Soo Kim
    Interdisciplinary Program in Bioengineering, Graduate School, Seoul National University, Seoul, Republic of Korea.
  • Bokyung Kim
    Department of Electronic and Electrical Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemoon-Gu, Seoul 03760, Republic of Korea.
  • Minwoo Cho
    Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
  • Hyunsoo Chung
    Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. hschungmd@gmail.com.
  • Ji Kon Ryu
    Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
  • Sungwan Kim
    Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea.