Gastric cancer, a significant global health concern, exhibits high morbidity and mortality, especially in advanced stages. Timely diagnosis and intervention are crucial for improving patient outcomes, with Endoscopic Submucosal Dissection (ESD) playi...
BACKGROUND: Static carcinoembryonic antigen (CEA) levels are well‑established prognostic markers in patients with gastric cancer, but the significance of their dynamic trajectories over time has rarely been reported.
To develop and validate artificial intelligence models based on contrast-enhanced CT(CECT) images of venous phase using deep learning (DL) and Radiomics approaches to predict lymphovascular invasion in gastric cancer prior to surgery. We retrospectiv...
Glycosylation changes are closely related to various diseases, including cancer. The quantitative analysis of site-specific glycans at proteomics scale remains challenging due to low glycopeptide spectra interpretation. Here, we present GlyPep-Quant,...
Helicobacter pylori (H. pylori) is the most common carcinogenic pathogen globally and the leading cause of gastric cancer. Here, we develop a reinforcement learning-based AI Clinician system to personalise treatment selection and evaluate its ability...
BACKGROUND: Neoadjuvant chemotherapy (NAC) can improve the prognosis of patients with locally advanced gastric cancer (LAGC). However, precise models for accurate prognostic predictions are lacking. We aimed to utilize Cox regression and integrate va...
PURPOSE: In the context of precision medicine, radiomics has become a key technology in solving medical problems. For adenocarcinoma of esophagogastric junction (AEG), developing a preoperative CT-based prediction model for AEG invasion and lymph nod...
This study developed a 5-year survival prediction model for gastric cancer patients by combining radiomics and deep learning, focusing on CT-based 2D and 3D features of the iliopsoas and erector spinae muscles. Retrospective data from 705 patients ac...
OBJECTIVE: To investigate the potential of a hybrid multi-instance learning model (TGMIL) combining Transformer and graph attention networks for classifying gastric adenocarcinoma differentiation on whole-slide images (WSIs) without manual annotation...
OBJECTIVE: To develop and validate a machine learning framework combined with a nomogram for predicting recurrence after radical gastrectomy in patients with vascular and neural invasion.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.