Unlocking Predictive Capability and Enhancing Sensing Performances of Plasmonic Hydrogen Sensors via Phase Space Reconstruction and Convolutional Neural Networks.

Journal: ACS sensors
PMID:

Abstract

This study innovates plasmonic hydrogen sensors (PHSs) by applying phase space reconstruction (PSR) and convolutional neural networks (CNNs), overcoming previous predictive and sensing limitations. Utilizing a low-cost and efficient colloidal lithography technique, palladium nanocap arrays are created and their spectral signals are transformed into images using PSR and then trained using CNNs for predicting the hydrogen level. The model achieves accurate predictions with average accuracies of 0.95 for pure hydrogen and 0.97 for mixed gases. Performance improvements observed are a reduction in response time by up to 3.7 times (average 2.1 times) across pressures, SNR increased by up to 9.3 times (average 3.9 times) across pressures, and LOD decreased from 16 Pa to an extrapolated 3 Pa, a 5.3-fold improvement. A practical application of remote hydrogen sensing without electronics in hydrogen environments is actualized and achieves a 0.98 average test accuracy. This methodology reimagines PHS capabilities, facilitating advancements in hydrogen monitoring technologies and intelligent spectrum-based sensing.

Authors

  • Xiangxin Lin
    School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China.
  • Mingyu Cheng
    School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China.
  • Xinyi Chen
    School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China. Electronic address: c2257873708@163.com.
  • Jinglan Zhang
    School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing 400044 , P.R. China.
  • Yiping Zhao
    Department of Physics and Astronomy, The University of Georgia, Athens, Georgia30602, United States.
  • Bin Ai
    School of Microelectronics and Communication Engineering, Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, Chongqing University, Chongqing400044, P. R. China.