Collaborative and privacy-enhancing workflows on a clinical data warehouse: an example developing natural language processing pipelines to detect medical conditions.

Journal: Journal of the American Medical Informatics Association : JAMIA
PMID:

Abstract

OBJECTIVE: To develop and validate a natural language processing (NLP) pipeline that detects 18 conditions in French clinical notes, including 16 comorbidities of the Charlson index, while exploring a collaborative and privacy-enhancing workflow.

Authors

  • Thomas Petit-Jean
    Innovation and Data Unit, IT Department, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France.
  • Christel Gérardin
    Institut Pierre Louis d'Epidémiologie et de Santé Publique, Sorbonne Université, Inserm, 27 rue Chaligny, 75012 Paris, France; Département de médecine interne, APHP. Sorbonne Université, France. Electronic address: christel.ducroz-gerardin@iplesp.upmc.fr.
  • Emmanuelle Berthelot
    Department of Cardiology, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin Bicêtre, 94270, France.
  • Gilles Chatellier
    Innovation and Data Unit, IT Department, Assistance Publique-Hôpitaux de Paris, Paris, 75012, France.
  • Marie Frank
    Department of Medical Informatics, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, 94270, France.
  • Xavier Tannier
    Sorbonne Université, Inserm, Univ Paris 13, Laboratoire d'Informatique Médicale et d'Ingénierie des Connaissances pour la e-Santé, LIMICS, 75006 Paris, France. Electronic address: xavier.tannier@sorbonne-universite.fr.
  • Emmanuelle Kempf
    Assistance Publique-Hôpitaux de Paris, Henri Mondor-Albert Chenevier University Hospital, Department of Medical Oncology, Créteil, France.
  • Romain Bey
    Centre of Research in Epidemiology and Statistics (CRESS), Université de Paris, French Institute of Health and Medical Research (INSERM), National Institute of Agricultural Research (INRA), Paris, France.