A Test Statistic Estimation-Based Approach for Establishing Self-Interpretable CNN-Based Binary Classifiers.

Journal: IEEE transactions on medical imaging
Published Date:

Abstract

Interpretability is highly desired for deep neural network-based classifiers, especially when addressing high-stake decisions in medical imaging. Commonly used post-hoc interpretability methods have the limitation that they can produce plausible but different interpretations of a given model, leading to ambiguity about which one to choose. To address this problem, a novel decision-theory-inspired approach is investigated to establish a self-interpretable model, given a pre-trained deep binary black-box medical image classifier. This approach involves utilizing a self-interpretable encoder-decoder model in conjunction with a single-layer fully connected network with unity weights. The model is trained to estimate the test statistic of the given trained black-box deep binary classifier to maintain a similar accuracy. The decoder output image, referred to as an equivalency map, is an image that represents a transformed version of the to-be-classified image that, when processed by the fixed fully connected layer, produces the same test statistic value as the original classifier. The equivalency map provides a visualization of the transformed image features that directly contribute to the test statistic value and, moreover, permits quantification of their relative contributions. Unlike the traditional post-hoc interpretability methods, the proposed method is self-interpretable, quantitative. Detailed quantitative and qualitative analyses have been performed with three different medical image binary classification tasks.

Authors

  • Sourya Sengupta
    Theoretical and Experimental Epistemology Lab, School of Optometry and Vision Science, University of Waterloo, Ontario, Canada; Department of Systems Design Engineering, University of Waterloo, Ontario, Canada. Electronic address: s28sengu@uwaterloo.ca.
  • Mark A Anastasio
    Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.