Using machine learning algorithms to detect fear of falling in people with multiple sclerosis in standardized gait analysis.
Journal:
Multiple sclerosis and related disorders
PMID:
38885599
Abstract
INTRODUCTION: Multiple sclerosis (MS) is the most common chronic inflammatory disease of the central nervous system. The progressive impairment of gait is one of the most important pathognomic symptoms which are associated with falls and fear of falling (FOF) in people with MS (pwMS). 60 % of pwMS show a FOF, which leads to restrictions in mobility as well as physical activity and reduces the quality of life in general. Therefore, early detection of FOF is crucial because it enables early implementation of rehabilitation strategies as well as clinical decision-making to reduce progression. Qualitative and quantitative evaluation of gait pattern is an essential aspect of disease assessment and can provide valuable insights for personalized treatment decisions in pwMS. Our objective was to identify the most appropriate clinical gait analysis methods to identify FOF in pwMS and to detect the optimal machine learning (ML) algorithms to predict FOF using the complex multidimensional data from gait analysis.