Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation.

Journal: Molecular informatics
Published Date:

Abstract

The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations. The model based on ExtraTree algorithm and random partitioning strategy obtains the best prediction result, with AUC value of 0.932±0.004 and balanced accuracy (BA) of 0.837±0.010 for the test set. We employed the SHAP method to identify important features associated with BBB permeability. In addition, matched molecular pair (MMP) analysis and representative substructure derivation method were utilized to uncover the transformation rules and distinctive structural features of BBB permeable compounds. The machine learning models proposed in this work can serve as an effective tool for assessing BBB permeability in the drug discovery for central nervous system disease.

Authors

  • Li Liang
    Duke Clinical Research Institute, Duke University, Durham, North Carolina.
  • Zhiwen Liu
    Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China.
  • Xinyi Yang
    Colorado School of Public Health-Biostatistics and Informatics, Aurora, CO, USA.
  • Yanmin Zhang
    Department of Paediatric Cardiology, Shaanxi Institute for Pediatric Diseases, Affiliate Children's Hospital of Xi'an Jiaotong University, Xi'an, China.
  • Haichun Liu
    Laboratory of Molecular Design and Drug Discovery, School of Science, China; Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198 Jiangsu, China.
  • Yadong Chen
    Laboratory of Molecular Design and Drug Discovery, School of Science, China; Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198 Jiangsu, China.