Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms.
Journal:
Journal of neuroscience methods
PMID:
38834145
Abstract
BACKGROUND: The significance of diagnosing illnesses associated with brain cognitive and gait freezing phase patterns has led to a recent surge in interest in the study of gait for mental disorders. A more precise and effective way to characterize and classify many common gait problems, such as foot and brain pulse disorders, can improve prognosis evaluation and treatment options for Parkinson patients. Nonetheless, the primary clinical technique for assessing gait abnormalities at the moment is visual inspection, which depends on the subjectivity of the observer and can be inaccurate.