Active Fabrics With Controllable Stiffness for Robotic Assistive Interfaces.

Journal: Advanced materials (Deerfield Beach, Fla.)
PMID:

Abstract

Assistive interfaces enable collaborative interactions between humans and robots. In contrast to traditional rigid devices, conformable fabrics with tunable mechanical properties have emerged as compelling alternatives. However, existing assistive fabrics actuated by fluidic or thermal stimuli struggle to adapt to complex body contours and are hindered by challenges such as large volumes after actuation and slow response rates. To overcome these limitations, inspiration is drawn from biological protective organisms combining hard and soft phases, and active assistive fabrics consisting of architectured rigid tiles interconnected with flexible actuated fibers are proposed. Through programmable tessellation of target body shapes into architectured tiles and controlling their interactions by the actuated fibers, the active fabrics can rapidly transition between soft compliant configurations and rigid states conformable to the body (>350 times stiffness change) while minimizing the device volume after actuation. The versatility of these active fabrics is demonstrated as exosuits for tremor suppression and lifting assistance, as body armors for impact mitigation, and integration with electrothermal actuators for smart actuation with convenient folding capabilities. This work offers a practical framework for designing customizable active fabrics with shape adaptivity and controllable stiffness, suitable for applications in wearable exosuits, haptic devices, and medical rehabilitation systems.

Authors

  • Xudong Yang
    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
  • Yu Chen
    State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
  • Tianyu Chen
    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
  • Junwei Li
    Department of Medical Oncology, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangzhou.
  • Yifan Wang
    School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.