NKUT: Dataset and Benchmark for Pediatric Mandibular Wisdom Teeth Segmentation.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

Germectomy is a common surgery in pediatric dentistry to prevent the potential dangers caused by impacted mandibular wisdom teeth. Segmentation of mandibular wisdom teeth is a crucial step in surgery planning. However, manually segmenting teeth and bones from 3D volumes is time-consuming and may cause delays in treatment. Deep learning based medical image segmentation methods have demonstrated the potential to reduce the burden of manual annotations, but they still require a lot of well-annotated data for training. In this paper, we initially curated a Cone Beam Computed Tomography (CBCT) dataset, NKUT, for the segmentation of pediatric mandibular wisdom teeth. This marks the first publicly available dataset in this domain. Second, we propose a semantic separation scale-specific feature fusion network named WTNet, which introduces two branches to address the teeth and bones segmentation tasks. In WTNet, We design a Input Enhancement (IE) block and a Teeth-Bones Feature Separation (TBFS) block to solve the feature confusions and semantic-blur problems in our task. Experimental results suggest that WTNet performs better on NKUT compared to previous state-of-the-art segmentation methods (such as TransUnet), with a maximum DSC lead of nearly 16%.

Authors

  • Zhenhuan Zhou
  • Yuzhu Chen
  • Along He
  • Xitao Que
  • Kai Wang
    Department of Rheumatology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
  • Rui Yao
  • Tao Li
    Department of Emergency Medicine, Jining No.1 People's Hospital, Jining, China.