Explainable Federated Medical Image Analysis Through Causal Learning and Blockchain.

Journal: IEEE journal of biomedical and health informatics
PMID:

Abstract

Federated learning (FL) enables collaborative training of machine learning models across distributed medical data sources without compromising privacy. However, applying FL to medical image analysis presents challenges like high communication overhead and data heterogeneity. This paper proposes novel FL techniques using explainable artificial intelligence (XAI) for efficient, accurate, and trustworthy analysis. A heterogeneity-aware causal learning approach selectively sparsifies model weights based on their causal contributions, significantly reducing communication requirements while retaining performance and improving interpretability. Furthermore, blockchain provides decentralized quality assessment of client datasets. The assessment scores adjust aggregation weights so higher-quality data has more influence during training, improving model generalization. Comprehensive experiments show our XAI-integrated FL framework enhances efficiency, accuracy and interpretability. The causal learning method decreases communication overhead while maintaining segmentation accuracy. The blockchain-based data valuation mitigates issues from low-quality local datasets. Our framework provides essential model explanations and trust mechanisms, making FL viable for clinical adoption in medical image analysis.

Authors

  • Junsheng Mu
  • Michel Kadoch
  • Tongtong Yuan
    College of Computer Science, Faculty of Information Technology, Beijing University of Technology, Beijing, China. Electronic address: yuantt@bjut.edu.cn.
  • Wenzhe Lv
  • Qiang Liu
    Blood Transfusion Laboratory, Jiangxi Provincial Blood Center Nanchang 330052, Jiangxi, China.
  • Bohan Li
    Department of Minimally Invasive Gynecologic Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100006, China.