Using deep learning for predicting the dynamic evolution of breast cancer migration.
Journal:
Computers in biology and medicine
PMID:
39068903
Abstract
BACKGROUND: Breast cancer (BC) remains a prevalent health concern, with metastasis as the main driver of mortality. A detailed understanding of metastatic processes, particularly cell migration, is fundamental to improve therapeutic strategies. The wound healing assay, a traditional two-dimensional (2D) model, offers insights into cell migration but presents scalability issues due to data scarcity, arising from its manual and labor-intensive nature.