AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Arsenates

Showing 1 to 3 of 3 articles

Clear Filters

Prediction of Cr(VI) and As(V) adsorption on goethite using hybrid surface complexation-machine learning model.

Water research
This study aimed to develop surface complexation modeling-machine learning (SCM-ML) hybrid model for chromate and arsenate adsorption on goethite. The feasibility of two SCM-ML hybrid modeling approaches was investigated. Firstly, we attempted to uti...

Optimisation led energy-efficient arsenite and arsenate adsorption on various materials with machine learning.

Water research
The contamination of water by arsenic (As) poses a substantial environmental challenge with far-reaching influence on human health. Accurately predicting adsorption capacities of arsenite (As(III)) and arsenate (As(V)) on different materials is cruci...

Machine learning integration with response surface methodology to enhance the removal efficacy of arsenate (V) through sulfur-functionalized mxene coated QPPO/PVA AEM.

Journal of environmental management
Arsenic, a poisonous and carcinogenic heavy metal in drinking water, presents severe health risks to humans, including skin lesions, neurological damage, and circulatory disorders. Despite extensive research efforts have been carried out on removing ...