Computational approaches for lead compound discovery in dipeptidyl peptidase-4 inhibition using machine learning and molecular dynamics techniques.

Journal: Computational biology and chemistry
PMID:

Abstract

The prediction of possible lead compounds from already-known drugs that may present DPP-4 inhibition activity imply a advantage in the drug development in terms of time and cost to find alternative medicines for the treatment of Type 2 Diabetes Mellitus (T2DM). The inhibition of dipeptidyl peptidase-4 (DPP-4) has been one of the most explored strategies to develop potential drugs against this condition. A diverse dataset of molecules with known experimental inhibitory activity against DPP-4 was constructed and used to develop predictive models using different machine-learning algorithms. Model M36 is the most promising one based on the internal and external performance showing values of Q = 0.813, and Q = 0.803. The applicability domain evaluation and Tropsha's analysis were conducted to validate M36, indicating its robustness and accuracy in predicting pIC values for organic molecules within the established domain. The physicochemical properties of the ligands, including electronegativity, polarizability, and van der Waals volume were relevant to predict the inhibition process. The model was then employed in the virtual screening of potential DPP4 inhibitors, finding 448 compounds from the DrugBank and 9 from DiaNat with potential inhibitory activity. Molecular docking and molecular dynamics simulations were used to get insight into the ligand-protein interaction. From the screening and the favorable molecular dynamic results, several compounds including Skimmin (pIC = 3.54, Binding energy = -8.86 kcal/mol), bergenin (pIC = 2.69, Binding energy = -13.90 kcal/mol), and DB07272 (pIC = 3.97, Binding energy = -25.28 kcal/mol) seem to be promising hits to be tested and optimized in the treatment of T2DM. This results imply a important reduction in cost and time on the application of this drugs because all the information about the its metabolism is already available.

Authors

  • Sandra De La Torre
    Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador.
  • Sebastián A Cuesta
    Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito170901, Ecuador.
  • Luis Calle
    Facultad de Ciencias Médicas, Instituto de Investigación e Innovación en Salud Integral, Universidad Católica Santiago de Guayaquil, Guayaquil 09013493, Ecuador.
  • José R Mora
    Instituto de Simulación Computacional (ISC-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito170901, Ecuador.
  • Jose L Paz
    Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru.
  • Patricio J Espinoza-Montero
    Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador.
  • Máryury Flores-Sumoza
    Facultad de Ciencias Básicas y Biomédicas, Programa de Química y Farmacia, Universidad Simón Bolívar, carrera 59 N° 59-65, Barranquilla 080002, Colombia.
  • Edgar A Márquez
    Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla081007, Colombia.