AI as a Medical Device Adverse Event Reporting in Regulatory Databases: Protocol for a Systematic Review.
Journal:
JMIR research protocols
PMID:
38990628
Abstract
BACKGROUND: The reporting of adverse events (AEs) relating to medical devices is a long-standing area of concern, with suboptimal reporting due to a range of factors including a failure to recognize the association of AEs with medical devices, lack of knowledge of how to report AEs, and a general culture of nonreporting. The introduction of artificial intelligence as a medical device (AIaMD) requires a robust safety monitoring environment that recognizes both generic risks of a medical device and some of the increasingly recognized risks of AIaMD (such as algorithmic bias). There is an urgent need to understand the limitations of current AE reporting systems and explore potential mechanisms for how AEs could be detected, attributed, and reported with a view to improving the early detection of safety signals.