Dual-Mode Fluorescent/Intelligent Lateral Flow Immunoassay Based on Machine Learning Algorithm for Ultrasensitive Analysis of Chloroacetamide Herbicides.

Journal: Analytical chemistry
PMID:

Abstract

Given the harmful effect of pesticide residues, it is essential to develop portable and accurate biosensors for the analysis of pesticides in agricultural products. In this paper, we demonstrated a dual-mode fluorescent/intelligent (DM-f/DM-i) lateral flow immunoassay (LFIA) for chloroacetamide herbicides, which utilized horseradish peroxidase-IgG conjugated time-resolved fluorescent nanoparticle probes as both a signal label and amplification tool. With the newly developed LFIA in the DM-f mode, the limits of detection (LODs) were 0.08 ng/mL of acetochlor, 0.29 ng/mL of metolachlor, 0.51 ng/mL of Propisochlor, and 0.13 ng/mL of their mixture. In the DM-i mode, machine learning (ML) algorithms were used for image segmentation, feature extraction, and correlation analysis to obtain multivariate fitted equations, which had high reliability in the regression model with of 0.95 in the range of 2 × 10-2 × 10 pg/mL. Importantly, the practical applicability was successfully validated by determining chloroacetamide herbicides in the corn sample with good recovery rates (85.4 to 109.3%) that correlate well with the regression model. The newly developed dual-mode LFIA with reduced detection time (12 min) holds great potential for pesticide monitoring in equipment-limited environments using a portable test strip reader and laboratory conditions using ML algorithms.

Authors

  • Yonghong Zha
    State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
  • Yansong Li
    State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
  • Jianhua Zhou
    Department of Ultrasound, Sun Yat-sen University Cancer centre, State Key Laboratory of Oncology in South China, Collaborative Innovation centre for Cancer Medicine, Guangzhou, China.
  • Xiaolan Liu
    Shenzhen Media Digital Technology Co. Ltd, Shenzhen 518038, China.
  • Ki Soo Park
    Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
  • Yu Zhou
    Department of Biospectroscopy, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany.